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Abstract. We show that the calculation of Berezin integrals over anticommuting variables
can be reduced to the evaluation of expectations of functionals of Poisson processes via an
appropriate Feynman–Kac formula. In this way the tools of ordinary analysis can be applied to
Berezin integrals and, as an example, we prove a simple upper bound. Possible applications of
our results are briefly mentioned.

Dedicated to the memory of Michel Sirugue

1. Introduction

In the last few decades the functional integral has become the standard approach to the
quantization of systems with infinitely many degrees of freedom. In typical cases like
QED and QCD which involve both bosons and fermions, the integral has to deal with
anticommuting variables belonging to a Grassmann algebra and a lucid exposition of the
rules of integration over these variables can be found in [B1, FS].

With the discovery of supersymmetry (SUSY) anticommutative integration received
further impetus and has been applied in different areas of physics and mathematics. SUSY
was first introduced in particle physics to express a possible fundamental symmetry between
bosons and fermions and then found several applications as a formal tool in the theory of
complex systems like heavy nuclei and more recently disordered or chaotic mesoscopic
systems [VWZ, F, Z]. In mathematics it plays a role in various approaches to index
theorems and other topics of differential geometry [BZ].

In physical applications of SUSY one introduces fields9 which have two types of
components, boson-likeϕ1, . . . , ϕ2n which are just ordinary numerical variables and fermi-
like ξ1, . . . , ξ2n where theξ ’s are anticommuting Grassmann variables. Supersymmetry
transformations mix boson and fermion components.

One is usually interested in the calculation of formal expressions like∫
d[φ] d[ξ ]

∏
i

ϕi
∏
j

ξj exp(−S(9))

called correlation functions. S(9) is a functional invariant under supersymmetry
transformations.
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Integrals over anticommuting variables were also introduced by Berezin in statistical
mechanics to represent the partition function of the planar Ising model [B2] and the
generating function of related combinatorial problems [B3]. See also [RZ].

The rules for the calculation of these integrals, known as Berezin integrals, are recalled
in section 2. In spite of the fact that this formalism allows compact and very powerful
manipulations of the expressions of interest, and in some cases exact calculations, it has the
drawback that the usual tools of analysis are not applicable to the anticommuting variables.
In particular one cannot easily find bounds for anticommutative integrals.

The purpose of this paper is to show that any Berezin integral can be represented in
terms of the expectations of appropriate functionals of Poisson processes. On the basis of
this representation, ordinary analysis can be used and in particular upper bounds can be
obtained. Furthermore, correlation functions such as those above can be expressed entirely
as expectations over ordinary stochastic variables.

The starting point of our analysis is a generalized Feynman–Kac formula developed in
the early 1980s to express the solutions of the imaginary-time Pauli equation [DJLS]. The
equation is

∂tψt = − 1
2(−i∇ −A(x))2ψt − V (x)ψt + 1

2H(x) · σψt (1.1)

whereA andH are the vector potential and the magnetic field respectively.σ denotes
the Pauli matrices in the usual representation. In [DJLS] we proved that the initial value
problem is solved by

ψt(x, σ ) = et E
[
ψ0(x + wt, (−)Nt σ ) exp

(
−
∫ t

0
V (x + wτ ) dτ − i

∫ t

0
A(x + wτ ) · dwτ

+1

2

∫ t

0
Hz(x + wτ )(−)Nτ σ dτ +

∫ t

0
log

[
1

2

(
Hx(x + wτ )

−i(−)Nτ σHy(x + wτ )
)]
dNτ

)]
. (1.2)

Hereσ is a dichotomic variable which can take the values±1. The expectation is taken with
respect to the Wiener processwt and the Poisson processNt . To understand this formula
we have to explain the meaning of the stochastic integral

∫
dNt . A Poisson process is a

jump process characterized by the following probabilities:

P(Nt+1t −Nt = k) = (1t)k

k!
e−1t .

Its trajectories are therefore piecewise constant increasing functions and we shall assume
that at each jump they are continuous from the left. The stochastic integral is just an
ordinary Stieltjes integral∫ t

0
f (τ) dNτ =

n∑
1

f (τi)

whereτi are random jump times in the interval [0, t) which are distributed exponentially,
i.e. P(τ 6 t) = 1− e−t .

The interesting property of equation (1.2) is that by letting the spinor indices to become a
stochastic process the Pauli matrices have disappeared from the expression of the evolution
operator and their algebra is completely taken into account by the expectation over the
jump process. The power of the approach was demonstrated by proving a non trivial
paramagnetic inequality which shows that in three dimensions the evolution is bounded
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above by the evolution in a magnetic field which lies in a plane and whose components are
simply related to the original magnetic field. This can easily be seen by taking absolute
values and implies for the ground states

E0(0, 0, 0; (H 2
1 +H 2

2 )
1/2, 0, H3) 6 E0(A1, A2, A3;H1, H2, H3).

For a recent application of the [DJLS] approach see [ER].
Since the Pauli matrices are objects which belong to a Clifford algebra the above findings

suggested a possible connection between calculus with Poisson processes and calculus
with anticommuting variables. It is the main purpose of this paper to implement such
a connection. To illustrate how the connection comes about, in section 3 we again take up
the case of Pauli-type equations and we observe that they can be interpreted as evolution
equations over a Grassmann algebra. This type of evolution was considered, for instance, by
Berezin and Marinov [BM, M]. Solutions of evolution equations over Grassmann algebras
can be expressed as Berezin integrals which represent the convolution of the kernel of
the evolution operator with the initial condition. A straightforward comparison with the
solution given in [DJLS] provides the identification of the anticommutative integrals with
the appropriate Poisson expectations.

In order to develop the theory in a systematic way for an arbitrary but finite number of
anticommutative variables, in section 4 we introduce a representation of Grassmann algebras
in the space of functions of dichotomic variables which we call theσ -representation. This
space was used by Wigner in his book on group theory [W] to find the representations of
the symmetric group connected with the exclusion principle.

In section 5 we develop the necessary theory of semigroups associated with Poisson
processes and in section 6 we identify the Berezin integrals with the appropriate expectations.
We also derive a general inequality.

In section 7 we discuss in particular the Gaussian anticommutative integrals due to their
importance in physical applications.

We conclude this introduction with some comments on possible interesting applications
of the results obtained in this paper. The semigroups associated to Poisson processes
encompass all Hamiltonian semigroups{exp(−tH)}t>0 for k interacting 1

2-spins in an
external magnetic field as in the case, for instance, of a Heisenberg ferromagnet or, by a
slight change of language, of any Hamiltonian semigroup for models describing interacting
fermions on a finite lattice. Our representation can therefore be used both for theoretical or
simulation studies of the statistical mechanics of such systems.

A particularly interesting case to which our approach can be applied is the calculation
of the Dirac propagator on a lattice, an important problem in the study of QCD on the
lattice. Presumably in this way it is possible to obtain a simplification of the methods used
at present in simulations. See the remark at the end of section 7.

More generally in all cases where SUSY is relevant our approach may be a useful tool.
We believe that our results are also of interest in their own right, insofar as they establish

a direct connection between algebraic objects, such as those represented by Berezin integrals,
and analytic expressions.

As a final remark we observe that the Wiener process and the Poisson process are
both Levy processes and are actually the two limiting cases of the Levy–Khinchin formula.
We therefore find their correspondence at the Euclidean level with the two basic types
of particles in nature, namely bosons and fermions, quite satisfying. Then the question
naturally arises: do the other processes described by the Levy–Khinchin formula have any
relevance for physics?
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2. Analysis on Grassmann algebras

We open this section by a short review of standard definitions and results and refer the
reader to [B1, D, FS] for more detailed information.

We denote byG(k) the Grassmann algebra overC generated by its identity1k and a
family {ξ1, . . . , ξk} of generators which obey the following commutation relations:

ξiξj = −ξj ξi ∀ i, j. (2.1)

For future reference,Gn(k) ' G(nk) will be the Grassmann algebra generated by1nk
and{ξ1

1 , . . . , ξ
1
k , ξ

2
1 , . . . , ξ

2
k , . . . , ξ

n
1 , . . . , ξ

n
k }, and by convention,G1(k) = G(k).

The collection{1, . . . , k} of labels is any non-empty finite set endowed with a total
ordering.

Elements ofG(k) of the formξi1ξi2 · · · ξin are called monomials; we will use the set of
ordered multi-indicesMk = {µ = (µ1, . . . , µn) : 16 µ1 < µ2 < · · · < µn 6 k}, and write

ξµ = ξµ1 · · · ξµn
for µ = (µ1, µ2, . . . , µn). As a linear spaceG(k) has dimension 2k, and each element
F(ξ) ∈ G(k) can be represented in a unique way as a polynomial with complex coefficients:

F(ξ) = F(ξ) = f0 · 1k +
k∑
r=1

∑
16i1<···< ir 6 k

fi1,...,ik ξi1 · · · ξir =
∑
µ∈Mn

fµ · ξµ (2.2)

wherefµ ∈ C, and thereforeG(k) is naturally graded. It is advantageous to think ofF(ξ)

as a ‘function’ of the Grassmann ‘variables’ξ1, . . . , ξk, that is to say of the ‘Fermi field’
{ξ1, . . . , ξk}.

Analysis overG(k) is based upon left derivativesδ/δξ1, . . . , δ/δξk and the Berezin
integral, which are defined as follows:

δ

δξi
ξµ1 · · · ξµn def= δµ1i · ξµ2 · · · ξµn − δµ2i · ξµ1ξµ3 · · · ξµn

+ (−1)k−1δµki · ξµ1 · · · ξµk−1

=
k∑

j=1

(−1)j−1δµj i · ξµ1 · · · /ξµj · · · ξµk−1

where the/ sign through the generatorξµj means that it is omitted.
To define an integral we introduce symbolsdξ1, . . . , dξk satisfying the following

commutation relations:

{dξi, dξj } = {dξi, ξj } = 0

where{a, b} = a · b + b · a, and define ‘basic’ integrals∫ B

dξi = 0
∫ B

ξµ · ξi dξi = ξµ

if µj 6= i for all j in µ. We extend the integral onG(k) by linearity and call it the Berezin
integral. In general∫ B

F (ξ) dξk · · · dξ1
def=
∫ B

F (ξ) Dkξ ≡ f1,...,k ∈ C (2.3)
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and observe that up to a multiplicative constant, is uniquely defined as the only linear form
overG(k) alternating under permutations of the Grassmannian variables. It transforms [B1]
as ∫ B

F (Rξ) Dkξ = (detR) ·
∫ B

F (ξ) Dkξ (2.4)

under the linear substitutionξi →
∑k
j=1Rij ξj .

An especially important case is provided by ‘Gaussian integrals’:∫ B

exp

{
1

2

k∑
i,j=1

Aij ξiξj

}
Dkξ (2.5)

where one can always assume thatA = (Aij ) is an antisymmetric matrix, otherwise it could
be replaced by 2−1(A−AT). ‘Gaussian integrals’ vanish fork odd while, by exploiting (2.4),
we obtain ∫ B

exp

{ ∑
16h<k62k

Ahkξhξk

}
D2kξ = Pf A. (2.6)

The PfaffianPf A of the triangular array{Ahk}16h<k62k is defined by

PfA =
∑
π

(−1)πAi1j1 · · ·Aikjk (2.7)

where the sum
∑

π is taken over all(2k)!/2kk! ways of pairing of the elements of the set
{1, 2, . . . ,2k} where(−1)π is the parity of the permutationπ = (i1j1, . . . , ikjk).

Let us consider the operator of left differentiationδ/δξi and the operator of left
multiplication ξ̂i by the elementξi , both acting onG(k) (see [B1]). In what follows we
shall omit the hat if confusion does not arise.

We recall that all linear operators acting onG(k) belong to the Clifford (or Spinor)
algebra C(2k) generated by its identitŷ12k and the operatorsδ/δξ1, . . . , δ/δξk, and
ξ1, . . . , ξk, which satisfy the following commutation relations:{

ξi,
δ

δξj

}
= δij

{
ξi, ξj

}
=
{
δ

δξi
,
δ

δξj

}
= 0 i, j = 1, . . . , k.

The algebraC(2k) is isomorphic to the canonical anticommutation relations (CAR) algebra
[BR] over a 2k-dimensional Hilbert space, since the operatorsδ/δξi and ξi might be
interpreted as annihilation and creation operators for a Fermi system withk degrees of
freedom.

We end this section by defining kernels of operators acting onG(k). We recall that to
eachL ∈ C(2k) there corresponds a unique element Ker(L)(ξ, ξ ′) of the Grassmann algebra
G(2k), generated byξ1, . . . , ξk, andξ ′1, . . . , ξ ′k, such that

(LF)(ξ) =
∫
B

Ker(L)(ξ, ξ ′) · F(ξ ′) Dkξ ′.

3. Evolution on G(k)

Let us consider the evolution given by the equation

∂ft

∂t
= Lft (3.1)

whereft ∈ G(k) andL ∈ C(2k).
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In this section first we solve equation (3.1) by constructing a kernel for the operator
exp(tL) using standard tools of Grassmannian analysis and writing the solution of (3.1)
as an element ofG(k) with coefficients given by certain Berezin integrals, and second,
we show that these integrals can be represented as expectations with respect to a properly
chosen family of standard Poisson processes.

We introduce some necessary constructions related to the formal description of
continuous time evolution onG(k). In order to do that it is convenient to embedG(k)
into an extended Grassmann algebraG∞(k), and we will proceed in the following way (cf
[MIS]). Consider three Grassmann algebras:

the Grassmann algebra0τ (k), τ = (t1, . . . , tm), generated by

1, ξ1(ti), . . . , ξk(ti); ρ1(ti), . . . , ρk(ti) i = 1, . . . , m

the Grassmann algebra0t ](k) generated by

1, ξ1(s), . . . , ξk(s); ρ1(s), . . . , ρk(s) s 6 t
and the Grassmann algebra0∞(k) generated by

1, ξ1(s), . . . , ξk(s); ρ1(s), . . . , ρk(s) s > 0

where

ξi(s) · ξj (t) = − ξj (t) · ξi(s) ρi(s) · ρj (t) = − ρj (t) · ρi(s)
and

ρi(s) · ξj (t) = −ξj (t) · ρi(s) ∀ i, j, ∀ s, t > 0.

We consider the exterior algebras

Gτ (k) = G0(k)
∧
0τ (k)

Gt ](k) = G0(k)
∧
0t ](k)

G∞(k) = G0(k)
∧
0∞(k)

whereG0(k) = G(k).

Remark. (a) For the construction of Grassmann algebras with an infinite number of
generators we also refer the reader to [B1, R, S]. (b) The generatorsρ will be used
only for ‘Fourier transform’-type expressions and play only an auxilliary role here.

Example. The Pauli equation onG(1).
Let us consider evolution onG(1), generated by1 andξ1, given by (3.1) where

L = h1 σ1+ h2 σ2+ h3 σ3

and we identify

σ1 = ξ + δ

δξ
σ2 = i

(
ξ − δ

δξ

)
σ3 = 1

i
σ1σ2

so that the usual commutation rules of Pauli matrices are satisfied.
As will be proved in theorem 3.1 the kernel of the operator exp(tL) can be written as

the limit

Ker(etL)(ξ, ξ ′) = lim
m→∞ Q

m
t (ξ, ξ

′)
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where

Qm
t (ξ, ξ

′) =
∫ B

· · ·
∫ B

︸ ︷︷ ︸
m times

Pmt (ξ, ξt , ρt , ξ
′) Dmρt Dmξt

which is the kernel of the operator(1+ (t/m)L)m and Pmt (ξ, ξt , ρt , ξ
′) ∈

G0(1)
∧
0τ(t,m)(1), with τ(t,m) = (t/m, 2t/m, . . . , [(m−1)t ]/m, t), and has the following

form:

Pmt (ξ, ξt , ρt , ξ
′) = exp

{ m∑
j=0

t

m

{
h1

[
ξ

(
j · t
m

)
+ ρ

(
j · t
m

)]
+ ih2

[
ξ

(
j · t
m

)
− ρ

(
j · t
m

)]

+h3

[
1− 2ξ

(
j · t
m

)
ρ

(
j · t
m

)]

− ρ
(
j · t
m

)[
ξ

(
j · t
m

)
+ ξ

(
(j − 1)t

m

)]}}
where

Dmρt = dρ
(
t

m

)
· · · dρ(t)

Dmξt = dξ
(
t

m

)
· · · dξ

(
(m− 1)t

m

)
and we setξ(0) = ξ ′, ξ(t) = ξ . In this way the solution of equation (3.1) with initial data
F(ξ) = f0 · 1+ f1 · ξ ; f0, f1 ∈ C can be written as

Ft(ξ) = (etL F )(ξ) =
∫ B [

Ker(etL)(ξ, ξ ′)F (ξ ′)
]
dξ ′ (3.2)

and we have

Ft(ξ) = f0(t)1+ f1(t) · ξ
where

f0(t) = −
∫ B∫ B [

Ker(etL)(ξ, ξ ′)F (ξ ′) · ξ] dξ ′ dξ (3.3)

f1(t) =
∫ B∫ B [

Ker(etL)(ξ, ξ ′)F (ξ ′)
]
dξ ′ dξ. (3.4)

On the other hand, from equation (1.2) specialized to the present simplified case, we have
that

f0(t) = et E
[
f 1

2 (1−(−1)Nt ) · exp

(∫ t

0
ln(h1− i(−1)Nτ h2) dNτ −

∫ t

0
h3(−1)Nτ dτ

)]
(3.5)

and

f1 = et E
[
f 1

2 (1+(−1)Nt ) · exp

(∫ t

0
ln(h1+ i(−1)Nτ h2) dNτ +

∫ t

0
h3(−1)Nτ dτ

)]
(3.6)
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whereNt is a Poisson process with unit parameter. Comparing equations (3.3) and (3.5)
we obtain

−
∫ B∫ B [

Ker(etL)(ξ, ξ ′)F (ξ ′)ξ
]
dξ ′ dξ

= et E
[
f 1

2 (1−(−1)Nt ) exp

(∫ t

0
ln(h1− i(−1)Nτ h2) dNτ

−
∫ t

0
h3(−1)Nτ dτ

)]
. (3.7)

An analogous equation can be written forf1(t).
In this way we obtain the equality between certain Berezin integrals and expectations

with respect to the standard Poisson process.

To discuss the general case, let us consider the family of operators

γj = ξj + δ

δξj
γj =

1

i

(
ξj − δ

δξk

)
j = 1, . . . , n

which satisfy the commutation relations

{γi, γj } = 0 {γi, γj } = {γ i, γj } = 2δij .

Furthermore, we will use the following notation. Letν, x, µ ∈ Mk where

ν = {ν1, . . . , νn} x = {x1, . . . , x`} µ = {µ1, . . . , µm}
such that

ν ∩ µ = ν ∩ x = s ∩ µ = ∅.
We will write

γ (ν,x,µ) =
n∏
i=1

γνi ·
∏̀
j=1

(γ xj γxj ) ·
m∏
r=1

γ µr . (3.8)

Let us set

L =
∑
(ν,x,µ)

h(ν,x,µ) γ
(ν,x,µ)

whereγ (ν,x,µ) ∈ C(2k) andh(ν,x,µ) ∈ C.

Theorem 3.1. The kernel of the operator exp(tL) acting onG(k) is given as the limit

Ker(etL)(ξ, ξ ′) = lim
m→∞ Q

m
t (ξ, ξ

′) ∈ G(2k)

where

Qm
t (ξ, ξ

′) =
∫ B

exp

{
−

m∑
j=1

(
−j · t
m

∑
(ν,x,µ)

[
h(ν,x,µ)

∏
ν

(ξν + iρν)

·
∏
x

(2ξxρx + i1)
∏
µ

1

i
(ξµ − iρµ)

])

−
m∑
j

n∑
r=1

ρr

(
j · t
m

)[
ξ ′r

(
j · t
m

)
+ ξ ′r

(
(j − 1)t

m

)]}
Dρ

if k is even; a similar formula holds fork odd (see the appendix).
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Proof. The proof is rather simple and we postpone it to the appendix.

In this way we can write the solution of equation (3.1) as the Berezin integral

Ft(ξ) = (etL F0)(ξ) =
∫ B

[Ker(etL)(ξ, ξ ′)F0(ξ
′)] Dξ ′

=
∑
µ∈M

fµ(t) · ξµ

with fµ(t) ∈ C.
Using the Berezin integration rules we immediately obtain

fµ(t) =
∫ B

[Ft(ξ) · ξµc
] Dξ =

∫ B
{∫ B

[Ker(etL)(ξ, ξ ′)F0(ξ
′)] Dξ ′ · ξµc

}
Dξ (3.9)

where µc ∈ M is a complementary multi-index toµ, i.e. µ = (µ1, . . . , µn)

and µc = (µc
1, . . . , µ

c
n′) are such that {µ1, . . . , µn}

⋂{µc
1, . . . , µ

c
n′ } = ∅ and

{µ1, . . . , µn}
⋃{µc

1, . . . , µ
c
n′ } = {1, 2, . . . , k}, and we assume here that∅c = {1, 2, . . . , k}.

Let us fix a total ordering≺ on M (lexicographic order, for example). It induces a total
ordering on the set of monomialsξµ in the following way:

ξµ ≺ ξµ′ if µ ≺ µ′.
Let us rename all monomials with respect to the order≺ by ξ1, ξ2, . . . , ξ2k , which form
the basis ofG(k) as a 2k-dimensional linear space.

In this basis the matrix elements of the operatorγ (ν,x,µ) = ∏n
i=1 γνi ·

∏`
j=1(γ xj γxj ) ·∏m

r=1 γ µr can be computed explicitly, so equation (3.1) could be rewritten as

∂fα(t)

∂t
=

2k∑
β=1

Lα,β fβ(t) (3.10)

where the coefficientsLα,β ≡ Lα,β(h1, h2, . . . , h2k ) ∈ C.
With an obvious definition of8(α, β) and9(α), equation (3.10) can be rewritten as

∂fα(t)

∂t
=

2k− 1∑
β=1

exp[8(α, β)] · fα⊕β(t)+9(α) · fα(t) (3.11)

with the initial condition

fα(0) = fα
and where the sign⊕ stands for the sum modulo 2k.

The solution of the linear system (3.11) is given by

fα(t) = e(2
k−1)·t · E

[
fα⊕Nt · exp

(∫ t

0
9(α ⊕Nt 	Nτ) dτ

+
2k−1∑
β=1

∫ t

0
8(α ⊕Nt 	Nτ 	 β, β) dNβ

τ

)]
(3.12)

whereNt =
∑2k−1

β=1 βN
β
t is the sum of 2k − 1 independent Poisson processes andα ⊕ Nt ,

α ⊕ Nt 	 Nτ , andα ⊕ Nt 	 Nτ 	 β stand for sums and differences modulo 2k. (For a
complete proof see [DJLS].)
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Now comparing equations (3.9) and (3.12)∫ B
{∫ B

[Ker(etL)(ξ, ξ ′)F0(ξ
′)]Dkξ ′ · ξµc

}
Dkξ

= e(2
k− 1)t · E

[
fα⊕Nt · exp

(∫ t

0
9(α ⊕Nt 	Nτ) dτ

+
2k−1∑
β=1

∫ t

0
8(α ⊕Nt 	Nτ 	 β, β) dNβ

τ

)]
(3.13)

whereα corresponds toµ in the ordering. Sums and differences modulo 2k are slightly
unconfortable to handle. In the next three sections we shall reformulate the theory in a
space of functions of dichotomic variables. This allows the construction of a systematic
formalism suitable for both theoretical and numerical analysis.

4. Representation of Grassmann algebras in the space of functions of dichotomic
variables (σ-representation)

In this section we discuss a linear bijection between Grassmann algebras and spaces of
functions of dichotomic variables.

Let Z2 be{−1, 1} with its natural Abelian group structure andZ×k2 be the direct product
of k copies ofZ2 which is a finite commutative group with the unit elementek = (1, . . . ,1).

Let us defineHk as the linear space of all ‘wavefunctions’χ(·) : Z×k2 → C of k
dichotomic variablesσ1, . . . , σk. It becomes a 2k-dimensional Hilbert space when equipped
with the inner product

〈χ1 , χ2〉k =
∑
σ∈Z×k2

χ1(σ )χ2(σ ) (4.1)

and could be interpreted as the space of (pure) states for a Heisenberg ferromagnet in a
finite box.

All monomials of the Grassmann algebraG(k) can be indexed by elements ofZ×k2 in
the following way:

σ 7→ ξ(σ ) ≡ ξ 1
2 (1−σ) = ξ

1
2 (1−σ1)

1 · · · ξ
1
2 (1−σk)
k σ = (σ1, . . . , σk) ∈ Z×k2 (4.2)

and let us define a mapI: Hk → G(k) by the formula

I(χ) ≡ Fχ(ξ) =
∑
σ∈Z×k2

χ(σ) · ξ 1
2 (1−σ) ∈ G(k) (4.3)

where the ‘wavefunction’χ(·) ∈ Hk.
It is easy to see that the mapI is injective, i.e.I(χ1) 6= I(χ2) if χ1 6= χ2. Moreover,

the mapJ : G(k)→ Hk defined by

J (F (ξ)) ≡ χ
F
(σ ) = 4k(σ )

∫ B

ξ
1
2 (1+σ) · F(ξ) Dkξ (4.4)

where4k(·) : Z×k2 → Z2 is given by

4k(σ ) =
k∏
l=1

(
1− σl

2
+ 1+ σl

2
· σ1 · · · σl−1

)
(4.5)
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is the inverse ofI : I = J −1, and, clearly, it is surjective. By this we obtain a
linear bijection between Grassmann algebraG(k) and the space of functions of dichotomic
variablesHk, which we call theσ -representation.

Next we turn toC(2k). To eachÂ ∈ C(2k) there corresponds a linear operator
A : Hk → Hk given by the formula

Â F (ξ) =
∑
σ∈Z×k2

(Aχ)(σ ) · ξ 1
2 (1−σ). (4.6)

For any Â ∈ C(2k), which is a linear combination of normally ordered products
ξ

1
2 (1−ε) · (δ/δξ) 1

2 (1−η), where ε, η ∈ Z×k2 , we find its imageA by computing the image
of the operatorsξ

1
2 (1−ε) · (δ/δξ) 1

2 (1−η) which we denote bya∗
1
2 (1−ε)a

1
2 (1−η).

Proposition 4.1. For all ε, η ∈ Z×k2 we have

(a∗
1
2 (1−ε)χ)(σ ) = Ck(ε, σ ) · χ(εσ)

(a
1
2 (1−η)χ)(σ ) = Ak(η, σ ) · χ(ησ)

(a∗
1
2 (1−ε)a

1
2 (1−η)χ)(σ ) = Nk(ε, η, σ ) · χ(εησ)

where

Ck(ε, σ ) =
k∏
l=1

(
1+ εl

2
+ 1− εl

2
· 1− σl

2
· ε1 · · · εl−1 · σ1 · · · σl−1

)

Ak(η, σ ) =
k∏
l=1

(
1+ ηl

2
+ 1− ηl

2
· 1+ σl

2
· η1 · · · ηl−1 · σ1 · · · σl−1

)
Nk(ε, η, σ ) = Ak(η, σ ) · Ck(ε, ησ )

andεσ = ε1σ1, . . . , εkσk.

Proof. This immediately follows from the fact that

ξ
1
2 (1−ε)ξ

1
2 (1−σ) = C(ε, εσ ) · ξ 1

2 (1−εσ )
(
δ

δξ

) 1
2 (1−η)

ξ
1
2 (1−σ) = A(η, ησ) · ξ 1

2 (1−ησ)

which can be checked by induction onk.

Corollary. If F(ξ) =∑ε ∈Z×k2
f (ε)ξ

1
2 (1−ε) ∈ G(k), the imageF(a∗) of the linear operator

F(ξ) ∈ C(2k) is

(F (a∗)χ)(σ ) =
∑
ε∈Z×k2

f (ε)Ck(ε, σ )χ(εσ ) (4.7)

and, in particular, whenF(ξ) =∑16i<j62k Aij ξiξj∑
16i<j62k

Aij (a
∗
i a
∗
j χ)(σ ) =

∑
(i,j)∈0(A)

Aij
1− σi

2

1− σj
2

×
j−1∏
l=i+1

σlχ(σ1, . . . ,−σi, . . . ,−σj , . . . , σ2k) (4.8)

where0(A) = {(i, j), 16 i < j 6 2k : Aij 6= 0}.
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Let A be a linear operator acting onHk andA(·, ·) its matrix, given by

(Aχ)(σ ) =
∑
σ ′∈Z×k2

A(σ, σ ′)χ(σ ′). (4.9)

For instance, from proposition 4.1 we obtain that the matrix element of the operator
a∗

1
2 (1−ε)a

1
2 (1−η) is given by

A(σ, σ ′) = Nk(ε, η, σ )δεσ,ησ ′ .
Now from equation (4.4) we obtain∫ B

ξ
1
2 (1+σ)A ξ

1
2 (1−σ ′) Dkξ = 4k(σ )A(σ, σ ′) ∀A ∈ C(2k) (E.1)

which relates the Berezin integral
∫ B
ξ

1
2 (1+σ)Âξ

1
2 (1−σ ′) Dkξ to the matrixA(σ, σ ′). This is

our first basic formula.

We end this section by some remarks about the kernels ofA ∈ C(2k). We recall that
to eachA ∈ C(2k) there corresponds a unique Ker(A)(ξ, ξ ′) ∈ G2(k), the kernel of the
linear operatorA, such that

AF(ξ) =
∫ B

Ker(A)(ξ, ξ ′)F (ξ ′) Dkξ ′ ∀F(ξ) ∈ G(k). (4.11)

It can easily be seen that for all positive integerk the kernel Ker(12k)(ξ, ξ
′) of the unit

element12K of C(2k) is

Ker(12k)(ξ, ξ
′) =

∑
σ ∈Z×k2

4k(σ )ξ 1
2 (1−σ)ξ

′ 1
2 (1+σ) (4.12)

and more generally

Ker(A)(ξ, ξ ′) =
∑

σ,σ ′ ∈Z×k2

4k(σ ′)A(σ, σ ′)ξ 1
2 (1−σ)ξ

′ 1
2 (1+σ ′) (4.13)

which, together with

A(σ, σ ′) = 4k(σ )
∫∫ B

ξ
1
2 (1+σ) Ker(A)(ξ, ξ ′)ξ

′ 1
2 (1−σ) dξ ′k · · · dξ ′1 dξk · · · dξ1 (4.14)

relates the kernel Ker(A)(ξ, ξ ′) of A and the matrixA(σ, σ ′).

5. Semigroups associated with Poisson processes

We now turn to semigroups of linear operators acting on the Hilbert spaceHk. We shall give
a probabilistic representation of the semigroup{exptL}t>0 generated by a non-trivial linear
operatorL : Hk → Hk. It specializes the more general formulae introduced in [DJLS] to
which we refer the reader; nevertheless this section will be self-contained.

We start with a special representation ofL ∈ L(Hk,Hk). For allε = (ε1, . . . , εk) ∈ Z×k2 ,

and different from the identityε 6= ek = (1, . . . ,1), let Dε be the self-adjoint difference
operator

(Dεχ)(σ ) = χ(εσ)− χ(σ) (5.1)

which annihilates constants.
We observe that eachL ∈ L(Hk, Hk) admits the representation

L =
∑
ε 6=εk

λε(·)Dε − V (·)1
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where the functionsλε(·), V (·) : Z×k2 → C are related to the matrixL(·, ·) of the operator
L by the formulae

(i) λε(σ ) = L(σ, εσ )
(ii) V (σ) = −

∑
σ ′∈Z×k2

L(σ, σ ′).

Let 0(L) be the collection ofε 6= ek such thatλε(·) is not identically vanishing and
|0(L)| be its cardinality. If0(L) 6= ∅ we call the operatorL a difference operator.

Now let {Nε
t }ε 6=ek be a given collection of(2k − 1) independent Poisson processes of

unit parameter which we assume to be left-continuous.

Theorem 5.1 (probabilistic representation of semigroups).LetL =∑ε∈0(L) λε(·)Dε−V (·)1
be a difference operator. Then

(etLχ)(σ ) = et |0(L)|E
(
χ(σ(−1)Nt ) exp

{ ∑
ε∈0(L)

(∫
[0,t)

ln λε(σ (−1)Ns ) dNε
s

−
∫ t

0
λε(σ (−1)Ns ) ds

)
−
∫ t

0
V (σ(−1)Ns ) ds

})
whereNs = (N1

s , . . . , N
k
s ) with Nl

s =
∑

ε∈0(L)
1
2(1− εl)Nε

s .

Remark. By convention exp
∫

[0,t) ln λε(σ (−1)Ns ) dNε
s vanishes ifλε(σ (−1)Ns ) = 0 for

some 0< s < t such thatNε
s+ − Nε

s 6= 0. We observe that it does not depend upon the
choice of the branch of the logarithm.

Proof. We follow the strategy explained in [DJLS].
(i) The right-hand side defines a semigroup{P t }t>0 of linear operators onHK by the
Markov property of Poisson processes. In order to complete the proof we must show that
the infinitesimal generator of{P t }t>0 coincides withL.
(ii) Since each wavefunctionχ(·) is a linear superposition of charactersχn(σ ) = σn =
σ
n1
1 · · · σnkk , n = (n1, . . . , nk) ∈ (Z∗2)×k,Z∗2 ≡ {0, 1}, we can only consider the case of
χ(·) = χn(·) for somen ∈ (Z∗2)×k. Let ξσ,nt be the random variable

ξσ,nt =
∑
ε∈0(L)

∫
[0,t)

bε,n(σ (−1)Ns ) dNε
s +

∫ t

0
m(σ(−1)Ns ) ds

where

bε,n(σ ) = iπ
k∑
l=1

1− εl
2

nl + ln λε(σ )

m(σ) = −
∑
ε∈0(L)

λε(σ )− V (σ).

By definition

(P tχn)(σ ) = χn(σ )et |0(L)|E(expξσ,nt ).

(iii) The stochastic differentiald expξσ,nt of the processt ∈ [0,+∞) → expξσ,nt can be
explicitly evaluated as explained in [DJLS]. It turns out that

d expξσ,nt = (expξσ,nt )

[
m(σ(−1)Nt ) dt +

∑
ε∈0(L)

(
exp

(
bε,n(σ (−1)Nt

)− 1
)
dNε

t

]
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= (expξσ,nt )

[
−V (σ(−1)Nt ) dt +

∑
ε∈0(L)

λε(σ (−1)Nt )(εn dNε
t − dt)

−
∑
ε∈0(L)

dNε
t

]
.

By taking the expectation ofd expξσ,nt for t = 0, sinceE(dNε
t ) = dt and (Dεχn)(σ ) =

(εn−1)χn)(σ ), it follows that
(
d(P tχn)(σ )/dt

)∣∣
t=0 = (Lχn)(σ ). Therefore the infinitesimal

generator of the semigroup{P t }t>0 is exactly the difference operatorL.

Example. As an elementary illustration of theorem 5.1, letk = 1 and (Dχ)(σ ) =
χ(−σ)− χ(σ); then

(etDχ)(σ ) = E(χ(σ (−1)Nt ))

whereNt is the Poisson process with unit parameter. Indeed

E(χ(σ (−1)Nt )) =
∞∑
n=0

e−t tn

n!
χ(σ(−1)n)

= e−t
{
χ(σ) cosht + χ(−σ) sinht

} = (etDχ)(σ ).
From theorem 5.1 we obtain the matrix elements of the operator etL:

etL(σ, σ ′) = et |0(L)|E
( k∏
l=1

1+ σlσ ′l (−1)N
l
t

2
exp

{ ∑
ε∈0(L)

(∫
[0,t)

ln λε(σ (−1)Ns ) dNε
s

−
∫ t

0
λε(σ (−1)Ns ) ds

)
−
∫ t

0
V (σ(−1)Ns ) ds

})
(E.2)

which is the second important equality, which will be used in section 6 to evaluate Berezin
integrals.

6. Berezin integrals and Poisson processes in theσ-representation

We shall consider Berezin integrals of the form∫ B

ξn exp(−S(ξ)) Dkξ =
∫ B

ξ
n1
1 ξ

n2
2 · · · ξnkk exp(−S(ξ)) Dkξ (6.1)

wheren = (n1, . . . , nk) ∈ (Z∗2)×k and S(ξ) 6= c · 1k is a non-trivial element ofG(k). It
could be interpreted as the ‘action’ for the (Euclidean) ‘Fermi field’{ξ1, . . . , ξk} in which
case (6.1) would provide all (unnormalized) ‘correlation functions’ or (Euclidean) ‘Green
functions’ of the field. In particular, forn = (0, 0, . . . ,0), equation (6.1) gives the ‘partition
function’:

Z[S] =
∫ B

exp(−S(ξ)) Dkξ. (6.2)

Remark. We could easily consider more general integrals by taking forS an element of
C(2k). Integrals of the form (6.1) cover a large class of physical applications.

Let s(·) : Z×k2 → C be defined as

s(ε) = 4k(ε)
∫ B

ξ
1
2 (1+ε)S(ξ) Dkξ (6.3)

with 4k(ε) as in (4.5).
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Theorem 6.1 (Berezin integrals as Poisson averages).For eachk = 1, 2, . . . , each non-
trivial S(ξ) ∈ Gk and for alln = (n1, . . . , nk) ∈ (Z∗2)×k∫ B

ξ
n1
1 · · · ξnkk exp(−S(ξ)) Dkξ

= 4k(−(−1)n) exp
(
(|0(S)| − s(ek))

)
E
( k∏
l=1

1− (−1)N
l
1+nl

2

× exp

{ ∑
ε∈0(S)

∫
[0,1)

ln
(−s(ε)Ck(ε,−(−1)Ns+n

))
dNε

s

})
(E.3)

wheres(ε) is given by (6.3).
In particular

Z[S] = e(|0(S)|−s(ek))E
( k∏
l=1

1− (−1)N
l
1

2
exp

{ ∑
ε∈0(S)

∫
[0,1)

ln
(−s(ε)Ck(ε,−(−1)Ns

))
dNε

s }
)
.

(6.5)

Proof. Using equation (4.4) we obtain

S(ξ) =
∑
ε∈Z×k2

s(ε)ξ
1
2 (1−ε) (6.6)

and, by hypothesis, the subset0(S) = {ε ∈ Z×k2 , ε 6= ek : s(ε) 6= 0} is non empty. To the
operator−S(ξ̂ ) ∈ C(2k) there corresponds the imageL = −S(a∗) ∈ L(Hk,Hk), which is
the difference operator

L =
∑
ε∈0(S)

λε(·)Dε − V (·)1 (6.7)

with

λε(σ ) = −s(ε)Ck(ε, σ ) (6.8)

V (σ) =
∑
ε∈Z×k2

s(ε)Ck(ε, σ ) = s(ek)−
∑
ε∈0(S)

λε(σ ). (6.9)

From equations (E.1), (E.2) and the equality

−V (σ)−
∑
ε∈0(S)

λε(σ ) = −s(ek)

it follows that

−
∫ 1

0
V (−(−1)Ns+n) ds −

∑
ε∈0(S)

∫ 1

0
λε(−(−1)Ns+n) ds = −s(ek).

In the aboveCk(ε, σ ) is as defined in proposition 4.1 andNs,Nl
s are as defined in

theorem 5.1.

We now make an important remark.

Remark. In equation (E.3) only the trajectories of the Poisson processes with zero or one
jump contribute to the expectation. In fact, as soon as one of the factors(1+ (−1)N

r
t +nr )

in Ck vanishes, the stochastic integral equals−∞. On the other hand,Nr
t is a sum of

independent processes and the event of two processes jumping at the same instant has zero
probability.
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We now take advantage of the fact that the calculation of a Berezin integral has been
reduced to an ordinary integral and we derive simple estimates. From theorem 6.1 we obtain∣∣∣∣ ∫ B

ξ
n1
1 · · · ξnkk exp(−S(ξ)) Dkξ

∣∣∣∣
6 exp

((|0(S)| − Res(ek)
))

E
( k∏
l=1

1− (−1)N
l
1+nl

2

× exp

{ ∑
ε∈0(S)

∫
[0,1)

ln
(|s(ε)|∣∣Ck(ε,−(−1)Ns+n)

∣∣) dNε
s

})

6 exp
((|0(S)| − Res(ek)

))
E
(
χ{Nε

1=0,1}
k∏
l=1

1− (−1)N
l
1+nl

2

∏
ε∈0(S)

|s(ε)|Nε
1

)

= e(−Res(ek))
1

2k
∑

ρ1,...,ρk=0,1

(−1)6
k
i=1ρi (1+ni )

×
∏
ε∈0(S)

{
1+ (−1)6

k
i=1ρi

1
2 (1−εi )|s(ε)|

}
(6.10)

since |Ck(ε, σ )| 6 1 and
∫

[0,1) dN
ε
s = Nε

1 ; χ is the characteristic function of the event
indicated.

7. Gaussian Berezin integrals

Gaussian Berezin integrals are a particular case when the ‘action’S is bilinear in the ‘Fermi
field’. Let G2(k) be the Grassmann algebra generated by{η1, . . . , ηk; η1, . . . , ηk} and(B)ij
any k × k matrix. Let us consider the integral∫ B

η
ν1
1 · · · ηνkk ην1

1 · · · ηνkk exp

{
− 1

2

k∑
i,j=1

Bijηiηj

}
Dkη Dkη (7.1)

where νl, νl ∈ Z∗2 = {0, 1}. Making the substitutionξ1 = η1, . . . , ξk = ηk; ξk+1 =
η1, . . . , ξ2k = ηk, we obtain

k∑
i,j=1

Bijηiηj =
2k∑

r,s=1

Arsξrξs

where(Ars) is the 2k × 2k antisymmetric matrix defined by

Ars =


2−1Br(s−k) whenr = 1, . . . , k ands = k + 1, . . . ,2k

−2−1Bs(r−k) whenr = k + 1, . . . ,2k ands = 1, . . . , k

0 otherwise.

(7.2)

Therefore the Gaussian integral (7.1) can be written in the following form:∫ B

η
ν1
1 · · · ηνkk ην1

1 · · · ηνkk exp

{
− 1

2

k∑
i,j=1

Bijηiηj

}
Dkη Dkη

=
∫ B

ξ
n1
1 · · · ξnk2k exp

(
− 1

2

2k∑
r,s=1

Arsξrξs

)
D2kξ (7.3)
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and from now on we use the last form. Let0(A) be the set:

0(A) = {(r, s), 16 r < s 6 2k : Ars 6= 0} (7.4)

which we suppose is not empty. From equation (4.8) we obtain the result that the generator
L of the corresponding semigroup is given by

(Lψ)(σ ) =
∑

(r,s)∈0(A)
Ars

1− σr
2

1− σs
2

s−1∏
l=r
σlψ(σ1, . . . ,−σr, . . . ,−σs, . . . , σ2k) (7.5)

and therefore∫ B

ξ
n1
1 · · · ξn2k

2k exp

(
− 1

2

2k∑
r,s=1

Arsξrξs

)
D2kξ

= 4k(−(−1)n)e|0(A)|E
( 2k∏
l=1

1− (−1)N
l
1+nl

2

∏
(r,s)∈0(A)

(Ars)
N
(r,s)
1

× exp

{ ∑
(r,s)∈0(A)

∫
[0,1)

ln

[
(1+ (−1)N

r
t +nr )(1+ (−1)N

s
t +ns )

4

×
s−1∏
l=r
(−1)s−r (−1)N

l
t+nl

]
dN

(r,s)
t

})
(E.4)

where {N(r,s)
t }(r,s)∈0(A) is a family of independent Poisson processes with unit parameter

and

Nl
t =

∑
(l,m)∈0(A)

N
(l,m)
t +

∑
(m,l)∈0(A)

N
(m,l)
t for all 16 l 6 2k.

Example. Let k = 1, n = (0, 0) and(Ars) = iσ2 (Pauli matrix), then

−1=
∫ B

e−ηη dη dη =
∫ B

exp

(
− 1

2
62
r,s=1Arsξrξs

)
D2ξ

= eE
(

1− (−1)N1

2
exp

∫
[0,1)

ln

[
− (−1)Nt

1+ (−1)Nt

2

]
dNt

)
. (7.7)

This equality can be checked directly: indeed the random variable under expectation
vanishes unless the Poisson process has exactly one jump for some 0< s < 1, in which
caseN1 = 1, and which happens with probability e−1.

Remark. Suppose we want to use our representation of Gaussian Berezin integrals in
a numerical simulation. Let 2k be the total number ofη and η. The generic case will
require the generation ofk(2k − 1) independent Poisson processes. For a Dirac field on
a finite d-dimensional lattice3, the maximum number of Poisson processes involved is
L|3|(2L|3| − 1)) whereL is the number of components of the field. This is a large
number. However, if we want to calculate the propagator of the free field, for example,
we need far fewer. In fact, the matrixBij which is the lattice version of the differential
operator /∂ + /A −M couples only nearest neighbours. Therefore the required number of
independent Poisson processes is reduced to roughlydL|3|, since each site has 2d nearest
neighbours.
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Appendix

Proposition A.1. The kernel of the operatorγ (ν,x,µ) given by (3.8) and acting onG(k) is
given by the following formulae:

Kerγ (ν,x,µ)(ξ, ξ ′) =
∫ B n∏

j=1

(ξνj + iρνj )
∏̀
j=1

(2ξxj ρxj + i1)

×
m∏
j=1

1

i
(ξµj − iρµj ) exp

{
− i

k∑
r=1

ρr(ξr − ξ ′r )
}
dρ (A.1)

if k is even, and

Kerγ (ν,x,µ)(ξ, ξ ′) =
∫ B n∏

j=1

(ξνj + ρνj ) ·
∏̀
j=1

(1− 2ξxj ρxj )

×
m∏
j=1

1

i
(ξµj − ρµj ) exp

{
−

n∑
r=1

ρr(ξr + ξ ′r )
}
dρ (A.2)

if k is odd.

The proof is straightforward, and we omit it here.

Remark. Here we expressed elements of the algebraG0(k) in the so-called ‘Fourier-
transform’ form. In fact, we just multiply the initial expression byρ-monomials and then
integrate overρ.

Let us set

L =
∑
(ν,x,µ)

h(ν,x,µ) γ
(ν,x,µ)

whereγ (ν,x,µ) ∈ C(2k), and are of the form (3.8), andh(ν,x,µ) ∈ C.
After computation using (A.1) and (A.2) we obtain

Ker(e
1
n
L)(ξ, ξ ′) = Ker

(
1− 1

n
L

)
(ξ, ξ ′)+ o

(
1

n

)

=
∫ B

exp

{
− 1

n

∑
(ν,x,µ)

h(ν,x,µ)
∏
ν

(ξν + iρν)
∏
x

(2ξxρx + i1)

×
∏
µ

1

i
(ξµ − iρµ)−

n∑
r=1

ρr(ξr + ξ ′r )
}
dρn · · · dρ1+ o

(
1

n

)
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for k even; an analogous formula holds fork odd.

Remark. Sincek is fixed, we always understand convergence as a pointwise convergence
in a finite-dimensional linear space.

Finally, applying Trotter’s formula, we have

etL f (ξ) = lim
m→∞

∫ B

· · ·
∫ B

Ker(e(t/m)L)

[
ξ, ξ

(
(m− 1)t

m

)]

× Ker(e(t/m)L)

[
ξ

(
(m− 1)t

m

)
, ξ

(
(m− 2)t

m

)]

· · · Ker(e−(t/m)L)
[
ξ

(
t

m

)
, ξ ′
]
f (ξ) dξ ′ dξ

(
t

m

)
· · · dξ

(
(m− 1)t

m

)

= lim
m→∞

∫ B

· · ·
∫ B

exp

{ m∑
j=1

(
− j · t

m

∑
(ν,x,µ)

h(ν,x,µ)
∏
ν

(ξν + iρν)

×
∏
x

(2ξxρx + i1) ·
∏
µ

1

i
(ξµ − iρµ)

)

−
m∑
j=1

n∑
r=1

ρr

(
j · t
m

)(
ξr

(
j · t
m

)
+ ξr

(
(j − 1)t

m

))}
f (ξ ′)

× dρ
(
t

m

)
· · · dρ(t) dξ ′ dξ

(
t

m

)
· · · dξ(t)

= lim
m→∞

∫ B

Qm
t (ξ, ξ

′)f (ξ ′) dξ ′ (A.3)

from which we obtain theorem 3.1.
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